Compatibility: Only available on Node.js.
QdrantVectorStore features and configurations head to the API reference.
Overview
Integration details
Setup
To use Qdrant vector stores, you’ll need to set up a Qdrant instance and install the @langchain/qdrant integration package.
This guide will also use OpenAI embeddings, which require you to install the @langchain/openai integration package. You can also use other supported embeddings models if you wish.
npm install @langchain/qdrant @langchain/core @langchain/openai
Credentials
Once you’ve done this set a QDRANT_URL environment variable:
// e.g. http://localhost:6333
process.env.QDRANT_URL = "your-qdrant-url"
process.env.OPENAI_API_KEY = "YOUR_API_KEY";
// process.env.LANGSMITH_TRACING="true"
// process.env.LANGSMITH_API_KEY="your-api-key"
Instantiation
import { QdrantVectorStore } from "@langchain/qdrant";
import { OpenAIEmbeddings } from "@langchain/openai";
const embeddings = new OpenAIEmbeddings({
  model: "text-embedding-3-small",
});
const vectorStore = await QdrantVectorStore.fromExistingCollection(embeddings, {
  url: process.env.QDRANT_URL,
  collectionName: "langchainjs-testing",
});
Manage vector store
Add items to vector store
import type { Document } from "@langchain/core/documents";
const document1: Document = {
  pageContent: "The powerhouse of the cell is the mitochondria",
  metadata: { source: "https://example.com" }
};
const document2: Document = {
  pageContent: "Buildings are made out of brick",
  metadata: { source: "https://example.com" }
};
const document3: Document = {
  pageContent: "Mitochondria are made out of lipids",
  metadata: { source: "https://example.com" }
};
const document4: Document = {
  pageContent: "The 2024 Olympics are in Paris",
  metadata: { source: "https://example.com" }
}
const documents = [document1, document2, document3, document4];
await vectorStore.addDocuments(documents);
Query vector store
Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent.
Query directly
Performing a simple similarity search can be done as follows:
const filter = {
  "must": [
      { "key": "metadata.source", "match": { "value": "https://example.com" } },
  ]
};
const similaritySearchResults = await vectorStore.similaritySearch("biology", 2, filter);
for (const doc of similaritySearchResults) {
  console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
}
* The powerhouse of the cell is the mitochondria [{"source":"https://example.com"}]
* Mitochondria are made out of lipids [{"source":"https://example.com"}]
metadata.
If you want to execute a similarity search and receive the corresponding scores you can run:
const similaritySearchWithScoreResults = await vectorStore.similaritySearchWithScore("biology", 2, filter)
for (const [doc, score] of similaritySearchWithScoreResults) {
  console.log(`* [SIM=${score.toFixed(3)}] ${doc.pageContent} [${JSON.stringify(doc.metadata)}]`);
}
* [SIM=0.165] The powerhouse of the cell is the mitochondria [{"source":"https://example.com"}]
* [SIM=0.148] Mitochondria are made out of lipids [{"source":"https://example.com"}]
Query by turning into retriever
You can also transform the vector store into a retriever for easier usage in your chains.
const retriever = vectorStore.asRetriever({
  // Optional filter
  filter: filter,
  k: 2,
});
await retriever.invoke("biology");
[
  Document {
    pageContent: 'The powerhouse of the cell is the mitochondria',
    metadata: { source: 'https://example.com' },
    id: undefined
  },
  Document {
    pageContent: 'Mitochondria are made out of lipids',
    metadata: { source: 'https://example.com' },
    id: undefined
  }
]
Usage for retrieval-augmented generation
For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:
API reference
For detailed documentation of all QdrantVectorStore features and configurations head to the API reference.